
TESTBED

THE USE OF GMAP
SOFTWARE
AS A PDES
ENVIRONMENT
IN THE NATIONAL
PDES TESTBED
PROJECT

Kim L. Perlotto

Pratt & Whitney,

United Technologies

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

National Engineering Laboratory

Factory Automation Systems Division

Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Hammer, Acting Director

NIST

NATIONAL
NlzTL

• r Qcioo

TESTBED

no, %q jlI) \n

C.v-

THE USE OF GMAP
SOFTWARE
AS A PDES
ENVIRONMENT Kim L. Perlotto

IN THE NATIONAL Pratt & Whitney,

United Technologies

PDES TESTBED
PROJECT

UiSi DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

National Engineering Laboratory

Center for Manufacturing Engineering

Factory Automation Systems Division

Gaithersburg, MD 20899

Sponsored by

U.S. Department of Energy

Office of Buildings and Community Systems
Washington, DC 20585

June 1989

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Acting Director

THE USE OF GMAP SOFTWARE AS A PDES ENVIRONMENT

IN THE NATIONAL PDES TESTBED PROJECT

PREPARED UNDER RESEARCH AGREEMENT BETWEEN

PRATT & WHITNEY AND NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

AS PART OF THE USAF GMAP CONTRACT

KIM L. PERLOTTO

JUNE 1989

ABSTRACT:

This report is a basic guide to the use of the GMAP
System Architecture as installed on the NIST AMRF VAX as
part of the National PDES Testbed Project. An overview of
the GMAP System Architecture is provided. The use of the
GMAP software to create an implementation environment for
the PDES First Working Draft (February 1989) is outlined.
This PDES specification has been accepted by ISO as an
international Draft Proposal. The software organization on
the NIST AMRF VAX and the development of test and
validation applications are described.

The GMAP System Architecture consists of software
system components which meet the three basic requirements
of an automated product data environment. The requirements
are data definition, application support, and data
exchange. The system components are defined and the role
they play is described.

GMAP is the Geometric Modeling Applications Interface
Program, a United States Air Force contract for which Pratt
& Whitney, United Technologies, was the prime contractor.
The installation of the GMAP software deliverables at the
National Institute of Standards and Technology was possible
under a technology transfer clause of the GMAP contract.

page 1

INTRODUCTION

As part of the technology transfer tasks under the United States Air
Force Geometric Modeling Applications Interface Program (GMAP) , the
software for the GMAP System Architecture supporting a product data
technology environment was installed at the National Institute of
Standards and Technology (NIST) by Pratt & Whitney, United Technologies,
in support of the National PDES Testbed Project. The Product Data
Exchange Specification (PDES) [1] is a product data specification being
coordinated by NIST, developed by industry, and desired by the
Department of Defense Computer-Aided Acquisition and Logistics Support
Program. The PDES specification has been accepted by the International
Organization for Standardization (ISO) as an international Draft
Proposal, and is currently in the review process. In the ISO arena, the
specification is informally known as the Standard for the Exchange of
Product Model Data (STEP) . The capability to test, verify, and validate
the PDES is a necessary one to make the specification a success.

The GMAP System Architecture installed on the NIST Automated
Manufacturing Research Facility (AMRF) VAX computer is being made
available to industry at large to test the current PDES specification.
Testing PDES in the GMAP environment includes the creation of product
model instances in the PDES schema, and the development and evaluation
of application programs against those product models. The tools with
which this can be accomplished are part of the GMAP System Architecture,
and are accessable on the NIST AMRF VAX computer.

The GMAP System Architecture supports a PDES implementation which is
based upon active file transfer. This means that product models are
contained in memory, accessed and manipulated there, and mapped to a
sequential exchange file on demand.

The GMAP System Architecture as installed at NIST, along with the
provided PDES physical implementation files, SUPPORTS EVERY ENTITY IN
THE ENTIRE PDES SPECIFICATION. At this point in time, it is believed to
be the only facility available to general industry that can make this
claim. As such, the interest in this environment should continue to be
very high.

Furthermore, with minimal effort, the PDES specification upon which
the system operates can be removed, and replaced with future versions of
the PDES specification, utilizing the ability of the GMAP System
Architecture to maintain schema independence.

page 2

PDES TESTING IN THE GMAP SYSTEM ARCHITECTURE

The testing of PDES using the GMAP System Architecture involves the
use of the GMAP software to support the product data environment. The
basic approach follows.

The focus of the system centers on an instance of a product model.
A product model is a rendition or implementation of a specific product
in terms of a given standard specification, in this case, the PDES
specification

.

In order to create a product model in the GMAP System Architecture,
one should develop a product model specification that is a document
describing each and every entity instance to be in the model, its
attributes, and its relations to other entities. The entity pool that
this specification is created from is the PDES specification itself, and
attribute values are determined from the specific product design.

The product model specification can then be used to guide- the
modeler in the creation of the product model in the GMAP System
Architecture. This operation is possible using components of the GMAP
software system.

The validation of the product model created is then performed. The
validation is from two points of view. The product model needs to be
evaluated as to its faithfulness to the PDES specification in the
formation of the entities, their attributes, and relations. The second
point of view for the validation process determines if the product model
accurately contains all the design attributes as specified by the
product model specification.

Once a correct validated product model is available in the GMAP
System Architecture, life cycle applications that access and manipulate
the product data in the product model can be developed. These
applications are supported by several GMAP system components.

The product data applications can then be executed, and their
results evaluated. The success of the applications can be measured by
the amount of data that they can be provided with from product models,
and the activities they can perform based on that data being available
in a single common format product model.

The detailed description of the indiividual GMAP System Components
that support the product data environment and testing development
processes outlined here follow. For those not concerned with the
technical aspects presented, it is possible to skip to the section
called "Developing PDES Test Applications" to read how the testing
development process suggested here is accomplished within the GMAP
System Architecture.

page 3

GMAP SYSTEM COMPONENTS

The GMAP System Architecture (Figure 1) consists of several software
system components which together meet the requirements of an automated
level 2 product data environment. There are three basic requirements
that need to be met. They are data definition, application support, and
data exchange. The system components are defined and the roles they
play are described.

! PDES ! ! FEDEX ! ! PDES.BIL !

! EXPRESS ! > ! PARSER ! >! FILE !

i

V

! SCHEMA !

i MANAGER !
—

!
j

V V

! PASCAL ! ! WORKING FORM ! ! DATA !

! INCLUDE FILE ! ! MODEL ! >! DICTIONARY !

|
A

[

A

i
; |

i

v v ! v

! APPLICATION !< >! MODEL ACCESS !< ! >! SYSTEM !

! PROGRAM !<- ! SOFTWARE ! ! ! TRANSLATOR !

— \ —
!

A
\

A
|

A

! \ ! ! !

v \ v ! v
\ I

! PDDI INTERIM ! ->! NAME / VALUE !< ! PDES EXCHANGE !

! DATABASE ! ! INTERFACE ! ! FILE !

Figure 1.

A diagram of the components and interactions in the
GMAP System Architecture at NIST

page 4

Working Form

The central focus of the system is an instance of the product model.
This is supported by the Working Form. The Working Form is a memory
resident network representation of a product model. This Working Form
is machine dependent, meaning that Working Forms of a given model on
different hardware platforms are not compatible. They do however,
behave and appear identical to the software that interacts with them.

The Working Form of an entity consists of three basic constructs in
the GMAP implementation. These are the Application Data Block (ADB)

,

the Constituent List (CL) , and the User List (UL) . Each of these are
separate but linked data structures, and the several Model Access
Software routines available act on these entity structures as well as
Application Lists that are working lists for application use.

The ADB is the base data structure for an entity. All attributes
that are of primitive data type or aggregations of primitive data types
are contained in the ADB. The system manages entities in the Working
Form by a set of attributes included by the system in the ADB. These
are present in every entity, and are named KIND, a number representing
the entity type, LENGTH, the byte size of the ADB for a particular
entity type, SYSUSE, a field used by the system for various flags, and
IDENT, a field that contains the instance number for a particular
instance of an entity type.

The Constituent List (CL) of an entity instance contains the
attributes that are of the reference or pointer type. The relations
between an entity and the entities that it depends on for its definition
are located in the CL. The position on the list is important, and
correlates the pointer with the appropriate attribute. The Data
Dictionary and the Pascal Include File (see below) contain information
to correlate symbolically the CL position with the attribute name. The
CL must be constructed by applications that create entities in. the
appropriate manner.

The User List (UL) is a list of all entities in the Working' Form
that reference a particular entity for definition of one or more of its
attributes. While it represents information used by the system to
control the deletion of an entity, it also represents the backward
pointers in the network model. In some instances, depending on the
schema definition, it is necessary to investigate the UL instead of the
CL to navigate from a given point in the network to points of interest.
The UL is completely maintained by the system, however, and need not be
constructed or otherwise manipulated by application programs.

The Model Access Software accesses entity instances in the Working
Form by a key, or unique number that addresses the ADB, CL, and UL of
the entity instance.

The Working Form, being the central focus of the GMAP System
Architecture, participates in all three roles required of a product data
environment: data definition, application support, and data exchange.

page 5

Schema Manager

The Schema Manager is the data definition component. It can accept
input in the form of an implementation schema specification in a format
unique to the Schema Manager called the Batch Input Language (BIL) . The
Schema Manager is able to read and process the BIL schema definition
into the physical implementation files that define the schema to the
system components and the applications. The outputs of the Schema
Manager are those physical files. They are the Data Dictionary Index,
the Data Dictionary Data, and the Pascal Include File. The Data
Dictionary contains all the entity type definitions in the
implementation schema along with a description of their attributes,
attribute types, and physical locations. The Data Dictionary is
dynamically refered to by the system components and application programs
that require knowledge of the schema structures. The Pascal Include
File contains much the same information as does the Data Dictionary,
except it is used to define the schema types and structures to Pascal
application programs and provides compile-time binding to the schema
definition

.

The Schema Manager also can create certain reports that provide
valuable references for validation of the schema implementation, and
schema implementation structure information needed in application
development

.

Data Dictionary

The Data Dictionary is the physical schema implementation file that
defines the implementation of target conceptual schema to the GMAP
system components and certain application programs. In this case, the
conceptual schema is the PDES specification. This information is
usually referenced in a dynamic, or runtime binding manner. The Data
Dictionary contains the structuring information for the implementation
structuring of entities in the schema. The entity structure definitions
contain entity and attribute names, data types, and physical location
information within the entity instances. It also contains the
information that can control the required presence or optionality of the
particular attributes. If attributes are of aggregate types, it defines
the particular aggregation parameters. If an attribute is of an
enumeration type, it defines the particular applicable enumeration
values. This component plays a role in all the product data
requirements: data definition, application support, and data exchange.
It is created automatically by the Schema Manager from the schema
definition input. The Data Dictionary satisfies the data definition
requirement for the system components and applications that choose to
use the information in this form.

page 6

Pascal Include File

The Pascal Include File contains much the same information as does
the Data Dictionary. It is designed to be used by Pascal application
programs at compile time to define the data structures of • the
implementation schema to the application. It allows Pascal application
programs to refer to the schema structure elements in a symbolic manner.
The Pascal Include File is also created automatically by the Schema
Manager from the schema definition input. The Pascal Include File
provides data definition to Pascal applications.

Model Access Software

The Model Access Software (MAS) is a library of routines that allow
the access, navigation, and manipulation of the Working Form product
model. The functionalities of the routines include creation, deletion,
modification, and retrieval of entities in the Working Form. It also
provides the ability to navigate along relationship paths in the product
model to access entities and attributes that are linked to other
entities. There is a complete set of list operations available for
managing the operations of the Model Access Software. The Model Access
Software plays a role in all three product data system requirements:
data definition, application support, and data exchange.

Name / Value Interface

The Name/Value Interface (NVI) is a set of routines that are
extensions to the Model Access Software. They provide direct store,
direct query, and procedural query capabilities to the application at
the attribute level of granularity. The application does not need to
have compile-time binding to the schema structure as it does with MAS
use with the Pascal Include File. The application provides the
qualified path name of an attribute of interest, and needs to know the
data type of the attribute to interpret the returned data from the
Name/Value Interface. The NVI uses the Data Dictionary to gain data
definition knowledge, and formulates the required MAS calls to perform
the required function. The primary use of the Name/Value Interface is
in the role of application support.

Application Program

The Application Program is any life-cycle functional application
that uses the Model Access Software and/or the Name/Value Interface to
access the data it requires from a product model in the Working Form.
In this role, applications such as product modelers, Numerical Control
tool path generators, and the like, interface to the product model.

System Translator
page 7

The System Translator is the system component that allows the data
exchange between dissimilar hardware platforms. To minimize the
confusion between PDES physical files of models for communication and
the PDES schema implementation physical files for the GMAP software, the
PDES physical file will be called the PDES Exchange File. The System
Translator is capable of postprocessing a product model in PDES Exchange
File format into a Working Form model on the system. The System
Translator is also capable of preprocessing a product model in Working
Form into a PDES Exchange File. The System Translator accomplishes
these tasks through the Model Access Software to manipulate the Working
Form, and the Data Dictionary to retrieve schema definition information
to guide its operation. It is accessable through the Product
Information Exchange System application and can also be linked into user
programs

.

PDDI Interim Database

The PDDI Interim Database (PID) is a routine that allows an
application to store a machine dependent Working Form product model to
disk, and to retrieve a disk model back into an active Working Form
model. This capability allows preservation of the model on a host
platform without having to utilize the System Translator and Exchange
File to translate between transient Working Form and persistent Exchange
File forms of a product model. It is used by applications and the
Product Information Exchange System application.

Product Information Exchange System

The Product Information Exchange System (PIES) is an executable
application program that allows manipulation and verification of a
product model. It can accept as input a product model PID file and/or a
PDES Exchange File. It allows the user to run the System Translator to
translate bidirectionally between the Working Form and the PDES Exchange
File. It also provides for the verification of product models against
the Data Dictionary. It checks for properly sized and structured
entities and correct entity relations. The PIES also provides several
analysis tools such as creating network hierarchies of constituent or
user entities. It allows data query on the entities, and can provide
overall product model statistics, such as total size of a model, number
of entities, and distribution of types of entities in the model.

page 8

Getting PDES Into The GMAP Implementation

In creating the environment for PDES to be used as the schema under
the GMAP System Architecture, it was necessary to create an
implementation schema specification from the PDES specification that the
Schema Manager would accept. This functionality was provided by the
National Institute of Standards and Technology. They have developed a
parser for the EXPRESS specification language. This parser is called
FEDEX [2], and runs in the Unix environment on Sun Workstations. The
PDES EXPRESS specification was analyzed and corrected until it would
successfully parse under FEDEX. FEDEX has a number of output modules,
one of which was developed to create a . BIL file as Schema Manager
input. The FEDEX output module for GMAP also creates an .AKA or alias
file that contains conceptual schema identifiers and implementation
schema identifiers. These identifiers had to be shortened due to
compiler restrictions on unique length of identifiers. The resultant
PDES. BIL file from FEDEX was then successfully processed by the Schema
Manager to create the physical implementation files that allow the
system to utilize the PDES schema.

The GMAP Schema Implementation of PDES

This section describes the physical implementation of the PDES
schema specification under the GMAP System Architecture. It outlines
the implementation constructs, and the application view of those
constructs. The EXPRESS language specification of a schema utilizes
several information modeling techniques and constructs to convey
information content. In this case, the EXPRESS specification of
interest is the PDES specification [1]. The PDES specification contains
the conceptual structuring, organization, and content of a schema that
supports several product data disciplines. The implementation of these
conceptual constructs within the GMAP System Architecture is described.

page 9

The use of the information modeling construct of categorization is
supported in the GMAP system. Categorization involves the abstraction
of several categories of entities into a generalized construct. It also
involves inheritance of the attributes of the generic entity by all the
category entities. This construct in the EXPRESS language is the
SUPERTYPE/SUBTYPE construct. All supertype entities in the schema
specification are contained in the schema model created by the Schema
Manager. In the physical implementation files, no supertype entities
exist. All attributes are distributed to the category, or subtype
entities in succession, resulting in the implementation of only the leaf
entities of the defined inheritance chains. However, there is a GMAP
implementation construct that supports the generic reference to the
supertype entities, called the Class construct. For every supertype in
the conceptual schema, a GMAP Class contruct is created. The Class is
an implementation type that supports attribute references to a
supertype. If a given attribute is a class reference, the class further
defines, in a recursive manner, all the implementation entities, or
other classes containing implementation entities, that are allowable for
reference in that context. These constructs exist in the Data
Dictionary for reference by the GMAP system components and application
programs

.

The aggregation attribute type constructs in the conceptual EXPRESS
specification of entities are supported in the GMAP implementation. Any
attributes that are aggregations of primitive data types other than
references to other entities are supported by direct imbedding of the
aggregation within the entity ADB structure. Any attributes that are
aggregations of entity references are supported by the reference of that
attribute to a GMAP internal entity called the ARRAY_ENTITY .

' The
entity's aggregation reference attribute on the entity CL points
directly to an ARRAY_ENTITY . The ARRAY_ENT I TY collects the references
to each element of the aggregation on its CL.

The optional attribute type constructs in the conceptual EXPRESS
schema specification are supported in the GMAP implemention . The
absence of an optional primitive data type needs to be compensated by
the addition of an attribute that signals the presence or absence of an
optional attribute. In the present condition, these flags are not in
the GMAP implementation of the PDES specification unless they were
explicitly defined in the PDES schema. However, attributes that are
optional pointers or references to other entities are handled. If an
optional entity reference is not present, the attribute is a reference
to a GMAP internal entity, the NIL_ENTITY. The use of the NIL_ENTITY
signals that the particular attribute has been opted to be absent. If
the optional entity reference attribute is indeed present, it will point
to an instance of the appropriate entity type.

page 10

The situation can be extended to the support of optional aggregation
attributes. In the case of optional aggregations of primitive data
types, the inclusion of additional attributes that signal the number of
elements that are present for the particular attribute instance are
suggested. Again, these flag attributes are not included in the GMAP
PDES implementation, except where they are defined explicitly in the
PDES specification. However, the support of optional aggregation
attributes that reference other entities is available under GMAP. The
particular attribute will reference a GMAP internal entity, the
ARRAY_ENTITY as above, except that the ARRAY_ENTITY will contain no CL
references to aggregation elements, effectively representing a null
list. This implementation strategy melds nicely with the Model Access
Software capability to detect the number of references an entity
contains

.

The setting of upper limits for implementation in the GMAP System
Architecture was one addition that was required to map the PDES
conceptual specification into an implementation schema. This type of
information was not present in the PDES specification, but should be
required of the final PDES specification if consistent and verifiable
implementations are to be expected.

The specification of all attribute and user defined types that were
of type STRING in the PDES specification were implemented as STRING (80).
All string types in the GMAP implementation are character arrays, and
not compiler or system dependent implementations of strings due to the
need for inter-system portability. If a STRING type had a precision
qualifier, it was preserved as that maximum length, otherwise it was
specified as having a length of 80 characters. In this respect, the
EXPRESS language qualifier VARYING on STRING types is ignored.

The attributes in the PDES conceptual schema that were defined as
aggregations specifying infinity (#) as the upper bound were implemented
with an arbitrary upper bound of 255 elements. This controls the fixed
allocation and total length of entity ADBs that contain such attribute
definitions, creating a finite limit to the number of elements that
these attributes may contain. However, the use of the upper limit of
255 does not limit the actual number of attributes of the aggregation
reference or pointer type, because these are contained on ARRAY_ENTITY
Constituent Lists, and as such are dynamically allocated, and only
limited by the amount of memory available to the Working Form.

DEVELOPING PDES TEST APPLICATIONS

Information on how to access the NIST AMRF VAX is included as
Appendix A. All GMAP software organization and location information is
included as Appendix B.

The basic approach to using the GMAP System Architecture as a PDES
implementation involves the creation of a PDES product model,
verification of the PDES product model, development of applications
using the PDES product model, and exchange of the PDES product model
between systems.

page 11

The creation of PDES product models begins with the design and
specification of the model based on the PDES specification itself, and
the specific product design requirements. It is suggested that each and
every entity instance in the product model be included in a
specification along with each attribute value in a dependent order.
Specify entities upon which other entities depend for definition before
the dependent entities are specified.

From such a specification, a product model can be created using the
very primitive modeling program written as a utility application program
on the system. This program is called MODEL. MODEL uses Data
Dictionary information to prompt the user through the creation of
entities and attributes from the prepared model specification. Please
note that there is a more sophisticated interactive graphics product
editor available as a GMAP deliverable on the IBM computer platforms.
This editor has not been ported to the VAX environment under this
research agreement

.

Once the PDES product model has been created, it can be verified
using the PIES utilities of the GMAP software. This will allow checking
of the model for proper sizing, structure, and references of each entity
in the product model. Any errors in the model can be corrected or
remodeled using the modeling program.

After a valid PDES product model is prepared, life-cycle functional
applications can be developed. These programs are written to access,
manipulate, and navigate through the product model for their data
requirements. The application programs interface to the product model
by using the Model Access Software and the Name/Value Interface. Refer
to the GMAP Model Access Software Users Manual for the details on the
individual routines. With the manual and the Physical Schema Report,
generated by the Schema Manager as a guide, it is possible to develop
application programs of any complexity. There are a few examples of
applications available on the system for a tutorial. Some are included
in this document for review as Appendix C.

Once the application is developed, it can be executed, and whatever
it was designed to accomplish can be objectively evaluated. This type
of testing is the ideal way to discover weaknesses, problems, or other
rough areas that exist within the PDES specification. It also
demonstrates the benefit and value of having such intelligent product
model data available to applications. Applications that have previously
been impossible due to data starvation may be enabled by the existence
of complete PDES product models.

The exchange of the PDES product models between dissimilar hardware
platforms can then be accomplished by utilizing the GMAP System
Translator accessed through the PIES program. The Working Form PDES
model as stored on disk by the PID can be translated to a PDES Exchange
File, transmitted to another hardware platform. There another
installation of the GMAP System Architecture, or another system
altogether can use the PDES Exchange File to accomplish its tasks.

page 12

GMAP DOCUMENTATION

GMAP System Components Operators Manual
GMAP Model Access Software Users Manual
GMAP System Translator Users Manual
GMAP Schema Manager Users Manual
GMAP Product Information Exchange Sysytem Users Manual

OM560240001U
UM560240031U
UM560240021U
UM560240011U
TTD560130002

These documents are thought to be the primary references for anyone
who desires to create application programs to test the PDES
specification under the GMAP System Architecture as it exists on the
NIST AMRF VAX. These documents, the entire set of deliverable
documents, and the deliverable software source code are available
through the United States Air Force. Details on how to order any of the
above can be obtained from the USAF by writing to:

Charles Gilman
AFWAL/MLTC
Wright-Patterson AFB, OH 45433-6533
513-255-7371

or:
AFWAL/MLTC
ICAM Program Library
Wright-Patterson AFB, OH 45433

Request the GMAP / PDDI Deliverables Roadmap Document to get an
overview of all the GMAP documents, software, and other contract
deliverables available to industry.

page 13

SUMMARY

While this document is intended to provide enough initial
information to be able to utilize the GMAP software environment on the
NIST AMRF VAX to test and validate the current PDES specification, it is
likely that this document will create more questions than it answers.
In order to obtain the technical advice that might be needed to
capitalize on the capabilities that the GMAP System Architecture
provides, you are encouraged to contact the author:

Kim L. Perlotto
Senior CAD/CAM Engineer
CAD/CAM Technology Group
Development Operations
Pratt & Whitney MS118-38
400 Main Street
East Hartford, Connecticut 06108
203-565-4254

For more information on the National PDES Testbed Project at the
National Institute of Standards and Technology, please feel free to
contact

:

Cita Furlani
Group Leader - National PDES Testbed Project
Factory Automation Systems Division
Center for Manufacturing Engineering
National Engineering Labratory
NIST
Building 220 Room A-127
Gaithersburg, MD 20899
301-975-3543

BIBLIOGRAPHY

[1] Bradford Smith, "Product Data Exchange Specification: First Working
Draft", NISTIR 88-4004, NTIS order number PB 89-144794.

[2] Steven Clark, "FedEx: The NIST Express Parser", May 19, 1989 Draft,
Factory Automation Systems Division, NIST.

page 14

APPENDIX -A-

ACCESSING THE GMAP SOFTWARE ON THE NIST AMRF VAX

Personal computer access to the NIST AMRF VAX can be obtained by
using most any communications software package that supports VT100
emulation by dialing 301-258-8996 with modem parameters of 1200-N-8-1.
User IDs and other access abilities can be arranged by contacting the
NIST AMRF VAX System Manager, Micky Potts, at 301-975-3537.

page 15

APPENDIX -B-

GMAP SOFTWARE ORGANIZATION ON NIST AMRF VAX

PDM$DISK : [GMAP]
PDM$DISK : [GMAP .PW]

PDM$DISK : [GMAP.V40]

Root directory for all GMAP files
Contains all P&W supplied files, including

PDES physical implementation files
Root directory for GMAP V4 .

0

software

PDM$DISK : [GMAP . V40 . COMFIL]

PDM$DISK : [GMAP . V40 .DDFILS]

Contains all .COM files for building
system and running software

Contains system files for GMAP and PDDI

PDM$DISK : [GMAP .V40 .MAS INC]
PDM$DISK : [GMAP .V40 .MAS SRC]
PDM$DISK: [GMAP .V40 .MAS OLB]

Include files for Model Access Software
Source files for Model Access Software
Object library for Model Access Software

PDM$DISK : [GMAP .V40 .NVI INC]
PDM$DISK : [GMAP .V40 .NVI SRC]
PDM$DISK

: [GMAP .V40 .NVI OLB]

Include files for Name/Value Interface
Source files for Name/Value Interface
Object library for Name/Value Interface

PDM$DISK : [GMAP .V40 . TRN INC]
PDMSDISK: [GMAP . V40 . TRNSRC]
PDM$DISK : [GMAP . V4 0 . TRNOLB

]

Include files for System Translator
Source files for System Translator
Object library for System Translator

PDM$DISK

:

PDM$DISK

:

PDM$DISK

:

PDM$DISK

:

[GMAP .V40
[GMAP .V40
[GMAP .V40
[GMAP .V40

. PIESINC]

. P IESSRC

]

. PIESOLB]

. PIESCOM]

Include files for PIES
Source files for PIES
Object library for PIES
Executable for PIES

PDM$DISK : [GMAP . V4 0 . PIDINC

]

PDM$DISK: [GMAP .V40 .PIDSRC]
PDM$DISK : [GMAP . V40 . PIDOLB]

- Include files for PDDI Interim Database
- Source files for PDDI Interim Database
- Object library for PDDI Interim Database

PDM$DISK : [GMAP . V40 . SMBINC]
PDM$DISK : [GMAP .V40 . SMBSRC]
PDMSDISK: [GMAP . V40 . SMBOLB]

- Include files for Schema Manager - Batch
- Source files for Schema Manager - Batch
- Object library for Schema Manager - Batch

PDM$DISK : [GMAP .V40 .RTS INC]
PDM$DISK : [GMAP . V40 . RTSSRC]
PDM$DISK : [GMAP .V40 .RTSOLB]

Include files - Schema Manager Runtime Subscht
Source files - Schema Manager Runtime Subschei
Object library - Schema Manager Runtime Subscl

page 16

INTERSTING FILES IN GMAP DIRECTORIES

PDM$DI SK : [GMAP .PW]
PDES.EXP
PDES.BIL
PDES.AKA
PDES.DDI
PDES.DDD
PDES.PIF
PDES.PSR
PDES.CSR
PDESPIES.COM -

RUN_SMT . COM -

NVIINT.COM
MODEL.COM
PDESPTS . PAS -

PDESLINE . PAS -

PDESNVI . PAS -

PDESDISK . SPC -

PDESDISK . WF -

PDESDISK. EF -

PDM$DISK : [GMAP .V40
GMAP_DDI.DAT -

GMAP_DDD.DAT -

GMAP . P IF
PDDI_DDI.DAT -

PDDI_DDD.DAT -

PDM$DISK : [GMAP .V40
RUN PIES.COM -

PDES EXPRESS - full specification, syntax corrected
PDES in GMAP Schema Manager Batch Input Language
PDES alias file, conceptual and implementation names
PDES Data Dictionary Index file
PDES Data Dictionary Data file
PDES Pascal Include File
PDES Physical Schema Report - Guide to implementation
PDES Conceptual Schema Report - schema exchange file
.COM file to run PIES under PDES schema
.COM file to run the Schema Manager
An interactive program that uses NVI to query a model
A primitive alpha-test program to create a PDES model
A simple example of a program to create 100 points
A simple program that creates two points and a line
A simple demo uses NVI to query the line model
A specification of a feature-based PDES product model
The Working Form of the model
The Exchange File of the model

DDFILS

]

GMAP Data Dictionary Index file
GMAP Data Dictionary Data file
GMAP Pascal Include File
PDDI Data Dictionary Index file
PDDI Data Dictionary Data file

. P IESCOM]
.COM file to run PIES under GMAP schema

page 17

APPENDIX -C-

(**)
(* PDESPTS.PAS -- a program to create PDES CARTES IAN_POINTs using MAS *)
(**)
program pdespts (input , output)

;

const
NUMPTS = 100;

(* type definitions supporting application use of MAS *)

%include '
[gmap. v40 .masinc] apltyp. inc/nolist'

(* PDES Pascal Include File - entity type definitions *)

%include ' [gmap
.
pw] pdes .pif/nolist'

var
adb : entblock; (* entity data area for application use *)

rc : ext_ret_code; (* MAS procedure return code variable *)

key, nilkey : entkey; (* MAS entity key variable *)

i : integer;
(*********
(* include
(*********
%include '

%include '

%include '

%include '

%include '

(*********

files to

[gmap.v40
[gmap . v4 0

[gmap . v4 0

[gmap.v40
[gmap . v40

**)
define external MAS and PID procedures used *)
**)
.pidinc] filrtv. inc/nolist ' external; (* PID *)

.masinc] mainit . inc/nolist ' external; (* MAS init *)

.masincjmaecr . inc/nolist' external; (* MAS create *)

.masinc] malatc . inc/nolist ' external; (* MAS ent rf *)

.masinc] makill . inc/nolist ' external; (* MAS term *)
**)

(**** main program ****)

begin
writeln (' Program to create '

,

NUMPTS : 1 ,

' PDES CARTES IAN_POINT entities.');
mainit (rc)

;

(* initialize MAS environment *)

adb. kind := K_NIL_ENTITY;
adb. length := sizeof (entblock, K_NIL_ENTITY)

;

adb.sysuse := 0;

adb.ident := 1;

maecr (adb, 0 , nilkey , rc) ; (* create the entity *)

for i := 1 to NUMPTS do begin
adb. kind := K_CARTESIAN_POINT;
adb. length := sizeof (entblock, K_CARTESIAN_POINT)

;

adb.sysuse := 0;
adb.ident := i;

adb . cartesian_point . x_coordinate := i;

adb . cartesian_point
.
y_coordinate := i;

adb . cartesian_point . z_coordinate := i;
adb . cartesian_point . space := 3;
maecr (adb, 0, key, rc) ; (* create the entity *)

malatc (k, nilkey , rc) ; (* this is optional geo_lclcrdntsys *)

writeln (

'

PDES CARTESIAN POINT #
' , adb . ident : 1

,
' created.);

end;
filtrv (0, rc)

;

writeln (
' PDES

' CARTESIAN

(

PDD model of '

,

NUMPTS :

1

POINT entities filed.')

*

/

file working form to disk *)

makill (rc)

;

(* terminate MAS environment *)

end.

page 18

(**)
(* PDESLINE . PAS - program to create two CARTES IAN_POINTs *)

(* and a LINE_SEGMENT

.

*)
(**)
program pdesline (input , output)

;

(* type definitions supporting application use of MAS *)

%include ' [gmap .v40 .masinc] apltyp . inc/nolist'
(* PDES Pascal Include File - entity type definitions *)

%include ' [gmap .pw] pdes .pif /nolist

'

var
adb : entblock;
rc : ext_ret_code;
pO, pi , 11 . nilkey, arraykey : entkey;
aryid : integer;

(*

(*

(*

application data block *)

return code for MAS calls
entity keys for access *)

)

(*

(* includes
(*

%include
%include
%include
%include
%include
(*

•*)

*)

*)
for external MAS and PID procedures

[gmap. v40 .pidinc] filrtv. inc/nolist'
[gmap . v4 0. ma sine] mainit. inc/nolist'
[gmap . v40 .masinc] maecr .inc/nolist'
[gmap.v4 0 .masinc] mal ate . inc/nolist

'

[gmap . v40 .masinc] makill .inc/nolist'

external; (* PID
external

;

(* MAS
external; (* MAS
external; (* MAS
external; (* MAS

*)

init *

)

create *)

ent ref *)

term *)

*j

(* internal procedures
(*

procedure createnil;
begin

adb. kind := K_NIL_ENTITY;
adb. length := sizeof (entblock, K_NIL_ENTITY)

;

adb.sysuse := 0;

adb.ident := 1;

maecr (adb, 0, nilkey, rc) ; (* create the entity *)

end;

*)

*)

(* *)

procedure creatept (i : integer;x, y, z rdouble; var k:entkey);
begin

adb. kind := K_CARTESIAN_POINT;
adb. length := sizeof (entblock, K_CARTESIAN_POINT)

;

adb.sysuse := 0;

adb.ident := i;
adb . cartesian_point . x_coordinate := i;

adb . cartesian_point .
y_coordinate := i;

adb . cartesian_point . z_coordinate := i;

adb . cartesian_point . space := 3;

maecr (adb, 0, k, rc) ; (* create the entity *)

malatc (k, nilkey , rc) ; (* this is optional geo_lclcrdntsys *)

end;

(* pdesline continued on next page *)

page 19

(* pdesline continued *)

procedure createline (i : integer;pO, pi :entkey; var krentkey);
begin

adb . kind := K_LINE_SEGMENT;
adb. length := sizeof (entblock, K_LINE_SEGMENT)

;

adb.sysuse := 0;

adb.ident := i;

maecr (adb, 0, k, rc)

;

adb. kind := K_ARRAY_ENTITY;
adb. length := sizeof (entblock, K_ARRAY_ENTITY)

/

adb.sysuse : = 0;

end;
(*

ary id := ary id + 1;

adb.ident := aryid;
maecr (adb, 0, arraykey, rc)
malatc (arraykey, pO, rc)

;

malatc (arraykey , pi , rc)

;

malatc (k, nilkey, rc)

;

malatc (k, arraykey, rc)

;

(*

(*

(*

(*

(*

create ARRAY_ENT I TY ADB *)

attach 1st point *)

attach 2nd point *)

this is optional geo_lclcrdntsys *)

this is POINTS attribute *)

(**** main program ****)

begin
aryid := 0;
writeln (' creating two PDES CARTES IAN_POINTs and a LINE_SEGMENT ...');
writeln;
mainit (rc)

;

(* MAS initialzation *)

createnil; (* create NIL ENTITY *)

creatept(l, 1.100, 1.200, 1.300, p0) ; (* create CARTESIAN POINT *)

creatept(2, 2.100, 2.200, 2.300, pl) ; (* create CARTESIAN POINT *)

createline (1, pO, pi, 11); (* create LINE_SEGMENT *)

filrtv (0, rc)

;

(* file model to disk *)

makill (rc)

;

(* MAS termination *)

end;

page 20

(**)
(* PDESNVI.PAS -- program using NVI on a PDES model of two *)

(* CARTES IAN_POINTs and a LINE_SEGMENT *)
(**)
program pdesnvi (input , output)

/

(* type definitions supporting application use of MAS *)

%include 7 [gmap.v40 .masinc] apltyp. inc/nolist'
(* PDES Pascal Include File - entity type definitions *)

%include 7 [gmap .pw] pdes .pif/nolist 7

(* type definitions supporting application use of NVI *)

%include 7 [gmap . v4 0 . masinc] nviaptyp . inc/nolist 7

type
strng = varying [80] of char;

(******************** INTERNAL VARIABLE DECLARATIONS ******************)
var

adb : entblock;
nam : t_attribute_name;
val : t_attribute_value;
dim : t_dimen_value;
11, key : entkey;
si, cl : listkey;
i,n : integer;
name : strng;
rc : ext__ret_code;
ddinx,ddfile : [common] text

;

(*****************
%include
%include
%include
%include
%include
%include
%include
%include
%include
%include

[gmap . v4
[gmap . v4
[gmap . v4
[gmap . v4
[gmap . v4
[gmap. v4
[gmap . v4
[gmap. v4
[gmap . v4
[gmap . v4

*** EXTERNAL MAS & NVI PROCEDURES **•

0 .masinc] malk . inc/nolist 7 external;
0. ma sine] malno.inc/ no list 7 external;
0 .masinc] malgtk . inc/noli st 7 external,
0 .masinc] maegtk .inc/nolist' external,
0 .masinc] maldi . inc /no list 7 external;
0 .masinc] makill .inc/no list 7 external,
0 . nviinc] nvdqan . inc /no list 7 external,
0 .nviinc] nvdsav. inc /nolist 7 external,
0 .nviinc] nvpqav. inc/nolist 7 external,
0 .pidinc] filrtv. inc/nolist 7 external,

(**
function str2ary (n : strng) : t_attribute_name;
var

****************)
(* make kind list *)

(* count entries *)

(* get key<list *)

(* get adb *)

(* delete lists *)

(* MAS term *)

(* direct query *)

(* direct store *)

(* proc query *)

(* file/rtrve *)
****************)

i : integer;
begin

name := n + END_OF_STRING;
for i := 1 to length (name) do

nam (. i .)
:= name (. i .)

;

str2ary := nam;
end;
(**)

(* pdesnvi continued on next page *)

page 21

(* pdesnvi continued *)

(**** main program ****)

begin
open (ddinx, ' ddinx' , readonly, error : =message)

;

open (ddfile, ' ddfile' , readonly, , direct , error : ^message)

;

filrtv (1, rc) ; (* retrieve model from disk, this initializes MAS *)

malk (K_LINE_SEGMENT, cl, rc) ; (* make list of all LINE_SEGMENTs *)

malgtk (cl, 1, 11, rc) ; (* get 1st LINE_SEGMENT' s key *)

writeln (' NVI DIRECT QUERY ');
dim (. 1 .)

:= 1; (* index of attribute of imterest *)

nvdqan (11, str2ary ('POINTS (1) . IDENT') , dim, val, rc)

;

writeln (' LINE_SEGMENT. 1 has a POINTS (1). IDENT of ' , val . as_integer : 1)

;

writeln;
writeln (' NVI DIRECT STORE ');
writeln (' storing 9.99999 to LINE_SEGMENT .

1 " s POINTS (1). Y_COORDINATE .'

)

val . as_real_8 := 9.99999;
dim (. 1 .)

;= 1; (* index of attribute of imterest *)

nvdsav (11 , str2ary (
' POINTS (1) . Y_COORD INATE ') , dim, val, rc)

;

writeln;
writeln (' NVI PROCEDURAL QUERY ');
write (' looking for CARTES IAN_POINTs with a');
writeln (' Z_COORDINATE <= 1.300...');
malk (K_CARTESIAN_POINT, cl, rc) ; (* make a list of all CARTES IAN_POINTs *

malno (cl, n, rc) ; (* count entries on candidate list *)

writeln (' number of LINE_SEGMENTs on candidate list is ',n:l);
val . as_real_8 := 1.300;
dim (. 1 .)

:= 0; (* index of attribute of imterest *)

nvpqav (cl, str2ary (' Z_COORDINATE'
)

, val, dim, LE, si, rc) ;

malno (si, n, rc)

;

(* count entries on selected list *)

writeln (' number of LINE_SEGMENTs on selected list is ',n:l);
for i := 1 to n do begin

malgtk (si, i, k, rc)

;

(* get a key off selected list *)

maegtk (k, adb, rc) ; (* get adb of that entity *)

writeln (' CARTES IAN_POINT-' , adb . ident : 1,
' has a Z_COORD INATE <= ' , val . as_real_8 : 7 : 5)

;

end;
maldi (cl, rc) ; (* delete all application lists *.)

makill (rc)

;

(* terminate MAS environment *)

end.

NBS-1 14A (rev. 2-eci

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NISTIR 89-4117

2. Performing Organ. Report No. 3. Publication Date

JUNE 1989

4. TITLE AND SUBTITLE
The Use of GMAP Software as a PDES Environment in the National PDES

Testbed Project

5. AUTHOR(S)
Kim L. Perlotto

6. PERFORMING ORGANIZATION (If joint or other than NBS, see in struction s)

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

8 . Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

10. SUPPLEMENTARY NOTES

I |

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

This report is a basic guide to the use of the GMAP System Archi tecture as in-
stalled on the NIST AMRF VAX as part of the National PDES Testbed Project. An overview
of the GMAP System Architecture is provided. The use of the GMAP software to create an
implementation environment for the IDES Draft Proposal Specification (February 1989) is)

outlined. Hie software organization on the NIST AMRF VAX and the development of test
and validation applications are described.

The GMAP System Architecture consists of software system corrponents which meet
the three basic requirements of an automated product data environment. The requirements)
are data definition, application support, and data exchange. The system components are
defined and the role they play is described.

GMAP is the Geometric Modeling Applications Interface Program, a United States
Air Force contract which Pratt & Whitney, United Technologies, was the prime contractor.

The installation of the GMAP software deliverables at the National Institute of
Standards and Technology was possible under a technology transfer clause of the QYIAP

contract

.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Product Data Exchange, PDES, Q4AP, Corputer-Aided Manufacturing, Corputer-Aided

Design, CAD, CAM, Factory Automation

13. availability

| XI Unlimited

| |

For Official Distribution. Do Not Release to NTIS

H Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

25

15. Price

$9.95

USCOMM-DC 8043-P80

